
A philosophical and
technical comparison
of Legion and
Globus

A. S. Grimshaw
M. A. Humphrey

A. Natrajan

Grids are collections of interconnected resources harnessed
to satisfy various needs of users. Legion and Globus are
pioneering grid technologies. Several of the aims and goals of
both projects are similar, yet their underlying architectures and
philosophies differ substantially. The scope of both projects is
the creation of worldwide grids; in that respect, they subsume
several distributed systems technologies. However, Legion
has been designed as a virtual operating system (OS) for
distributed resources with OS-like support for current and
expected future interactions among resources, whereas Globus
has long been designed as a “sum of services” infrastructure,
in which tools are developed independently in response to
current needs of users. We compare and contrast Legion
and Globus in terms of their underlying philosophy and the
resulting architectures, and we discuss how these projects
converge in the context of the new standards being formulated
for grids.

1. Introduction
Grids are collections of interconnected resources
harnessed to satisfy various user needs. The resources may
be administered by different organizations and may be
distributed, heterogeneous, and fault-prone. The manner
in which users interact with these resources and the
usage policies for the resources may vary widely. A grid
infrastructure must manage this complexity so that users
can interact with resources as easily and smoothly as
possible.

Our definition, and indeed a popular one, is the
following: A grid system is a collection of distributed
resources connected by a network. A grid system (or,
simply, a grid) gathers resources—whether they be desktop
and hand-held hosts, devices with embedded processing
resources (such as digital cameras and phones) or
terascale supercomputers—and makes them accessible to
users and applications. Access to these resources provides
a means to reduce overhead and accelerate projects. A
grid application can be defined as an application that
operates in a grid environment or is on a grid system.
Grid-system software (or middleware) is software that
facilitates writing grid applications and manages the

underlying grid infrastructure. The resources in a grid
typically share at least some of the following
characteristics:

● They are numerous.
● They are owned and managed by different organizations

and individuals that may be mutually distrustful.
● They are potentially faulty.
● They have different security requirements and policies.
● They are heterogeneous; e.g., they have different

CPU architectures, run different operating systems,
and have different amounts of memory and disk
storage.

● They are connected by heterogeneous, multi-level
networks.

● They have different resource management policies.
● They are likely to be geographically separated (on a

campus, in an enterprise, on a continent).

The above definitions of a grid and a grid infrastructure
are necessarily general. What constitutes a “resource” is a
deep question, and the actions performed by a user on
a resource can vary widely. For example, a traditional

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

233

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
A philosophical and technical comarison of Legion and Globus

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

definition of a resource has been machine, or more
specifically, CPU cycles on a machine. The actions users
perform on such a resource can be running a job, checking
availability in terms of load, and so on. These definitions
and actions are legitimate, but limiting. Today, for
example, resources can be as diverse as biotechnology
applications, stock market databases, and wide-angle
telescopes. The actions being run for each of these might
be the following: check whether license is available, join
with user profiles, and procure data from specified sector,
respectively. A grid can encompass all such resources
and user actions. Therefore, a grid infrastructure must be
designed to accommodate these varieties of resources and
actions without compromising basic principles such as ease
of use, security, and autonomy.

A grid enables users to collaborate securely by sharing
processing, applications, and data across systems with the
above characteristics in order to facilitate collaboration, to
speed up application execution, and provide easier access
to data. More concretely, this means being able to

● Find and share data: Access to remote data should be
as simple as access to local data. Incidental system
boundaries should be invisible to users who have been
granted legitimate access.

● Find and share applications: Many development,
engineering, and research efforts consist of custom
applications—permanent or experimental, new or
legacy, public domain or proprietary— each with its own
requirements. Users should be able to share applications
with their own data sets.

● Find and share computing resources: Providers should
be able to grant access to their computing cycles to
users who need them without compromising the rest
of the network.

In this paper, we compare two pioneering grid
technologies: Legion and Globus. As members of the
Legion project, we naturally have a deeper understanding
of Legion than of Globus. However, we have attempted to
present a careful, balanced, and symmetric comparison of
the two projects from the literature we have found. To
this end, we have avoided going into deep details of
Legion in order to maintain parity with our understanding
of Globus. In Section 2, we explain why we chose to
compare Legion with Globus rather than other
technologies. Under the broad definition of a grid given
so far, we show that these two remain, at the time of
this writing, as the only technologies that attempt to
build a complete grid. In Section 3, we enumerate a
set of requirements for grids and then describe how each
project addresses each requirement, noting the relative
importance of each requirement to each project. We also
describe the design principles of each project. In that

section and in the rest of this paper, our intention is to
offer a constructive, informative differentiation to the
community without criticizing the work of the Globus
Toolkit**. Despite the differences between Legion and
Globus, we respect the approach and successes of the
Globus project and are currently working together on the
community-defined Open Grid Services Architecture
[(OGSA); see Section 6]. The specifics of each
architecture are contained in Section 4. When referring
to their philosophy and architecture, we refer to the two
projects respectively as Legion and Globus, but if referring
to their implementation, we refer to them respectively as
Legion 1.8 and Globus 2.0, the numbers denoting the
latest versions available at the time of writing. Specifically,
when referring to Globus, we discuss Version 2 of the
toolkit (GT2), not Version 3 (GT3). 1 In Section 5, we
present the current status of both projects, touching on
commercial as well as academic deployments. In Section 6,
we discuss both projects in the context of upcoming
standards, specifically the OGSA being formulated by
the Global Grid Forum (GGF**). We summarize this
comparison in Section 7. We encourage readers to peruse
the many Legion and Globus papers listed in the
references and bibliography.

2. Background and related work
Over the years, there have been many definitions of what
constitutes a grid. Below, we present a small list of the
more visible definitions.

Users will be presented the illusion of a single, very
powerful computer, rather than a collection of
disparate machines. [. . .] Further, boundaries
between computers will be invisible, as will the
location of data and the failure of processors.

—Grimshaw [1]

We believe that the future of parallel computing lies
in heterogeneous environments in which diverse
networks and communication protocols interconnect
PCs, workstations, small shared-memory machines,
and large-scale parallel computers.

—Foster, Kesselman, and Tuecke [2]

A computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities.

—Foster and Kesselman [3]

1 When this paper was written in early 2003, GT2 was the most prevalent version
of the Globus architecture. Subsequently, the Globus Project released the new
GT3 architecture. Although GT3 differs significantly from GT2 in architecture,
its philosophical underpinnings are similar. Therefore, our comparison with
GT2 continues to be highly relevant.

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

234

. . . a Grid is a system that: (i) coordinates resources
that are not subject to centralized control . . . (ii)
using standard, open, general-purpose protocols and
interfaces . . . (iii) to deliver nontrivial qualities of
service . . .

—Foster [4]

A Grid is a hardware and software infrastructure that
provides dependable, consistent, and pervasive access
to resources to enable sharing of computational
resources, utility computing, autonomic computing,
collaboration among virtual organizations, and
distributed data processing, among others.

—Gentzsch [5]

. . . the overall grid vision [is] flexible access to compute,
data, and unique network resources by providing flexible
access and sharing of desktop PC resources.

—Chien [6]

A Grid system is a collection of distributed resources
connected by a network. . . . Grid system software (or
middleware) is software that facilitates writing Grid
applications and manages the underlying Grid
infrastructure.

—Grimshaw et al. [7]

With time, the definitions have become more and more
general in order to encompass the wide capabilities we
now expect from a grid. There is a clear tendency to
define what constitutes a resource in a grid and what
actions may be performed on those resources in more
general terms. Moreover, several of the definitions present
(and argue for or against) general characteristics of a grid.
Evaluating currently available commercial and academic
technologies against the characteristics mentioned in these
and other definitions is a valuable survey exercise;
however, we do not undertake it here. Instead, we
compare Legion and Globus alone.

From the start, a common Legion and Globus goal was
to build grids that would span administrative domains.
This shared goal differentiates these projects from other
distributed systems. For example, queuing systems, such
as Network Queuing System (NQS) [8], Portable Batch
System (PBS) [9], Load Sharing Facility (LSF) [10, 11],
LoadLeveler* [12], Codine [13], and Sun Grid Engine
(SGE) [13] were not initially designed to operate across
administrative domains or even multiple clusters within a
single domain. Although some of these queuing systems—
LSF and SGE in particular— have adapted to multicluster
configurations, their underlying design does not address
grid goals. Likewise, systems such as Parallel Virtual
Machine (PVM) [14], Message-Passing Interface (MPI)
[15], Networks of Workstations (NOW) [16], Distributed
Computing Environment (DCE) [17], and Mentat [18 –20]
were intended to enable writing parallel or distributed

programs, but did not have any support for concerns such
as wide-area security, multiple administrative domains,
and fault tolerance. Some academic projects, such as
Condor [21], Nimrod [22], and PUNCH [23] were
designed in much the same manner as Legion and Globus.
However, these projects did not encompass a diversity
of resources and actions, as did Legion and Globus.
For example, Condor provided support for location-
independent running of a specific class of resources,
namely applications; Nimrod provided fault-tolerance
and monitoring of a specific class of resources, namely
parameter-space applications; and PUNCH provided
location-independent access to a specific class of
resources, namely data files.

The Globe project [24] shares many common goals and
attributes with Legion. For instance, both are middleware
metasystems that run on top of existing host operating
systems and networks, both support implementation
flexibility, both have a single uniform object model
and architecture, and both use class objects to abstract
implementation details. However, the Globe object model
is different. A Globe object is passive and is assumed to
be potentially physically distributed over many resources
in the system, whereas a Legion object is active and is
expected to reside within a single address space. These
conflicting views of objects lead to different mechanisms
for inter-object communication. Globe loads part of the
object (called a local object) into the address space of the
caller, whereas Legion sends a message of a specified
format from the caller to the callee. Another important
difference is the notion of core object types. Legion core
objects are designed to have interfaces that provide useful
abstractions, enabling a wide variety of implementations.
We are not aware of similar efforts in Globe. We believe
that the design and development of the core object types
define the architecture of Legion and ultimately determine
its utility and success. Legion is designed to look like
an operating system (OS) for grids, whereas Globe is
designed to look more like an application environment.
On the other hand, Globe differs much more from
Globus because Globus does not have an underlying
object model.

Although not intended for grid computing, the Common
Object Request Broker Architecture (CORBA**) standard
developed by the Object Management Group (OMG**)
[25] shares a number of elements with the Legion
architecture. Similar to the Legion idea of many possible
object implementations that share a common interface,
CORBA systems support the notion of describing the
interfaces to active, distributed objects using an interface
description language (IDL), and then linking the IDL
to implementation code that might be written in any
of a number of supported languages. Compiled object

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

235

implementations rely on the services of an object request
broker (ORB), analogous to the Legion run-time system,
for performing remote method invocations. Despite these
similarities, the different goals of the two systems result in
different features. Whereas CORBA is more commonly
used for business applications, such as providing remote
database access from clients, Legion is intended for
executing high-performance applications as well. This
difference in vision manifests itself at all levels in the two
systems—from the basic object model up to the high-level
services provided. For example, where CORBA provides
a simple RPC-based (remote procedure call) method
execution model suited to client-server-style applications,
Legion provides a coarse-grained dataflow method
execution model, called a macro-dataflow 2 model, suitable
for highly concurrent grid applications.

Finally, several commercial projects such as Entropia**,
United Devices**, and Parabon** attempted and continue
to attempt building large grids. However, unlike Legion
and Globus, several of these projects impose restrictions
such as the inability to run on a wide range of platforms,
or code conversion of applications to one language or
another. Such restrictions violate several of the grid
principles to which both Legion and Globus adhere,
as discussed in the next section.

3. Requirements and design principles
Legion and Globus share a common base of target
environments, technical objectives, and target end users,
as well as a number of similar design features. Both
systems abstract access to processing resources, Legion
via an interface called the host object, 3 and Globus via a
service called the Globus Resource Allocation Manager
(GRAM) interface [28]. Both systems also support
applications developed using a range of programming
models, including popular packages such as MPI, the
standard (supported by most vendors) for interprocess
communication on parallel computers. Despite these
similarities, the systems differ significantly in their basic
architectural techniques and design principles. Legion
builds higher-level system functionality on top of a single
unified object model 4 and set of abstractions to insulate

the user/programmer from the underlying complexity
of the grid. The Globus implementation is based on the
combination of working components into a composite grid
toolkit that fully exposes the grid to the programmer.

The Globus approach of adding value to existing
high-performance computing services, enabling them to
interoperate and work well in a wide-area distributed
environment, has a number of advantages. For example,
this approach takes advantage of code reuse and builds on
user knowledge of familiar tools and work environments.
However, a challenge associated with this sum-of-services
approach is that, as the number of services grows in such
a system, the lack of a common programming interface to
Globus components and the lack of a unifying model
of their interaction can have a negative impact on
ease of use. Typically, end users must compensate
for the system by providing their own mechanisms for
service interoperability. By providing a common object
programming model for all services, Legion enhances the
ability of users and tool builders to use a grid computing
environment effectively by employing the many services
that are needed: schedulers, I/O services, applications, etc.
Furthermore, by defining a common object model for all
applications and services, Legion permits a more direct
combination of services. For example, traditional system-
level agents, such as schedulers, and normal application
processes are both normal Legion objects exporting the
standard object-mandatory interface. We believe in the
long-term advantages of basing a grid computing system
on a cohesive, comprehensive, and extensible design.

In this section, we contrast the Legion philosophy and
architecture with our belief and understanding of the
Globus philosophy and architecture. We start with the
high-level design requirements for Legion and enumerate
the design principles that guided its development.
Following that, we describe the Globus philosophy and
architecture. While we believe that the Legion and Globus
teams largely agree on requirements, their differences lie
in the emphasis or approach placed on each requirement.
In this section, we therefore present the same
requirements list as we did for Legion, but augmented
with a discussion of each requirement in the context of
Globus. We then enumerate the design principles that we
believe guided the development of Globus. Whereas the
requirements lists for Legion and Globus are identical,
the design principles differ because of key differences
in architectural approach. While we have attempted to
differentiate the discussion of each requirement from its
implementation (discussed in more detail in the architectural
detail section), we have found it necessary at times to

2 Macro-dataflow [19, 26, 27] is a data-driven computation model based on
dataflow in which programs and subprograms are represented by directed graphs.
Graph nodes are either method calls (procedure calls) or subgraphs. A node
“fires” when data is available on all input arcs. In Legion, graphs are first-class and
can be passed as parameters and manipulated directly [27]. Macro-dataflow lends
itself to flexible communication between objects. For example, the model permits
asynchronous calls, calls to methods where parameters may come in from yet other
objects, and dispersal of results to multiple recipients.
3 A Legion object runs in or is contained in a host object when it is executing.
Thus, a host object is essentially a virtualization of what would now be called a
hosting environment, as in Java** 2 Enterprise Edition (J2EE). The host object
interface [29] includes methods for metadata collection, object instantiation, killing
and suspending object execution, etc.
4 The fact that Legion is object-based does not preclude the use of non-object-
oriented languages or non-object-oriented implementations of objects. In fact,
Legion supports objects written in traditional procedural languages such as C and
Fortran [30] as well as object-oriented languages such as C��, Java, and Mentat

Programming Language (MPL, a C�� dialect with extensions to support parallel
and distributed computing) [20].

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

236

provide some implementation details to clarify the
requirements and design discussion.

Legion requirements
Clearly, the minimum capability needed to develop grid
applications is the ability to transmit bits from one
machine to another—all else can be built from that.
However, several challenges frequently confront a
developer constructing grid applications. These challenges
lead us to a number of requirements that any complete
grid system must address. The designers of Legion
believed, and continue to believe, that all of these
requirements must be addressed by the grid infrastructure
in order to reduce the burden on the application
developer. If the system does not address these issues,
they must be dealt with by the programmer, who is forced
to spend valuable time on basic grid functions, thus
needlessly increasing development time and costs.
These requirements are high-level and independent of
implementation; they are discussed in the following
sections.

Security
Security covers a gamut of issues which include
authentication, data integrity, authorization (access
control), and auditing. If grids are to be accepted by
corporate and government information technology (IT)
departments, a wide range of security concerns must be
addressed. Security mechanisms must be integral to
applications and capable of supporting diverse policies.
Furthermore, we believe that security must be firmly
built in from the beginning. Trying to patch it in as an
afterthought (as some systems are currently attempting to
do) is a fundamentally flawed approach. We also believe
that no single security policy is perfect for all users
and organizations. Therefore, a grid system must have
mechanisms that allow users and resource owners to select
policies that fit particular security and performance needs
while meeting local administrative requirements.

Global name space
The lack of a global name space for accessing data and
resources is one of the most significant obstacles to wide-
area distributed and parallel processing. The current
multitude of disjoint name spaces greatly impedes the
development of applications that span sites. All grid
objects must be able to access (subject to security
constraints) any other grid object transparently without
regard to location or replication.

Fault tolerance
Failure in large-scale grid systems is and will be a fact of
life. Machines, networks, disks, and applications frequently
fail, restart, disappear, or otherwise behave unexpectedly.

Forcing the programmer to predict and handle all of these
failures significantly increases the difficulty of writing
reliable applications. Fault-tolerant computing is known
to be a very difficult problem. Nonetheless, it must be
addressed, or businesses and researchers will not entrust
their data to grid computing.

Accommodating heterogeneity
A grid system must support interoperability between
heterogeneous hardware and software platforms. Ideally,
a running application should be able to migrate from
platform to platform if necessary. At a bare minimum,
components running on different platforms must be able
to communicate transparently.

Binary management and application provisioning
The underlying system should keep track of executables
and libraries, knowing which ones are current, which ones
are used with which persistent states, where they have
been installed, and where upgrades should be installed.
These tasks reduce the burden on the programmer.

Multilanguage support
Diverse languages will always be used, and legacy
applications will need support.

Scalability
There are more than 400 million computers in the world
today and more than 100 million network-attached devices
(including computers). Scalability is clearly a critical
necessity. Any architecture relying on centralized
resources is doomed to failure. A successful grid
architecture must adhere strictly to the distributed-systems
principle: The service demanded of any given component
must be independent of the number of components in the
system. In other words, the service load on any given
component must not increase as the number of
components increases.

Persistence
Input/output (I/O) and the ability to read and write
persistent data are critical for communicating between
applications and for saving data. However, the current
files/file-libraries paradigm should be supported, since
it is familiar to programmers.

Extensibility
Grid systems must be flexible enough to satisfy current
user demands and unanticipated future needs. Therefore,
we feel that mechanism and policy must be realized by
replaceable and extensible components, including (and
especially) core system components. This model facilitates
development of improved implementations that provide
value-added services or site-specific policies while enabling

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

237

the system to adapt over time to a changing hardware and
user environment.

Site autonomy
Grid systems will be composed of resources owned by
many organizations, each of which desires to retain
control over its own resources. The owner of a resource
must be able to limit or deny use by particular users,
specify when it can be used, etc. Sites must also be able
to choose or rewrite an implementation of each Legion
component to best suit their needs. If a given site trusts
the security mechanisms of a particular implementation,
it should be able to use that implementation.

Complexity management
Finally, and significantly, complexity management is one of
the biggest challenges in large-scale grid systems. In the
absence of system support, the application programmer
is faced with a confusing array of decisions. Complexity
exists in multiple dimensions: heterogeneity in policies for
resource usage and security, a range of different failure
modes and different availability requirements, disjoint
namespaces and identity spaces, and the sheer number of
components. For example, professionals who are not IT
experts should not have to remember the details of five or
six different file systems and directory hierarchies (not to
mention multiple user names and passwords) in order
to access the files they use on a regular basis. Thus,
providing the programmer and system administrator with
clean abstractions is critical to reducing their cognitive
burden.

Legion design principles
To address these basic grid requirements we developed
the Legion architecture and implemented an instance of
that architecture, the Legion run-time system [29, 31, 32].
The architecture and implementation were guided by the
following design principles, which were applied at every
level throughout the system.

Provide a single-system view
With today�s operating systems, we can maintain the
illusion that our local area network is a single computing
resource. But once we move beyond the local network
or cluster to a geographically dispersed group of sites,
perhaps consisting of several different types of platforms,
the illusion breaks down. Researchers, engineers, and
product development specialists (most of whom do not
want to be experts in computer technology) are forced to
request access through appropriate gatekeepers, manage
multiple passwords, remember multiple protocols for
interaction, keep track of where everything is located, and
be aware of specific platform-dependent limitations (this
file is too big to copy or transfer to that system; that

application runs only on a certain type of computer, etc.).
Recreating the illusion of a single computing resource
for heterogeneous, distributed resources reduces the
complexity of the overall system and provides a single
namespace.

Provide transparency as a means of hiding detail
Grid systems should support the traditional distributed
system transparencies: access, location, heterogeneity,
failure, migration, replication, scaling, concurrency, and
behavior. For example, users and programmers should not
have to know where an object is located in order to use it
(access, location, and migration transparency), nor should
they need to know that a component across the country
failed; they want the system to recover automatically and
complete the desired task (failure transparency). This
behavior is the traditional way to mask details of the
underlying system.

Provide flexible semantics
Our overall objective was a grid architecture suitable to
as many users and purposes as possible. A rigid system
design in which policies are limited, tradeoff decisions are
preselected, or all semantics are predetermined and hard-
coded would not achieve this goal. Indeed, if we dictated a
single system-wide solution to almost any of the technical
objectives outlined above, we would preclude large classes
of potential users and uses. Therefore, Legion allows users
and programmers as much flexibility as possible in the
semantics of their applications, resisting the temptation to
dictate solutions. Whenever possible, users can select both
the kind and the level of functionality and choose their
own tradeoffs between function and cost. This philosophy
is manifested in the system architecture. The Legion
object model specifies the functionality but not the
implementation of the system core objects; the core
system therefore consists of extensible, replaceable
components. Legion provides default implementations of
the core objects, although users are not obligated to use
them. Instead, we encourage users to select or construct
object implementations that answer their specific needs.

Reduce user effort
In general, there are four classes of grid users who are
trying to accomplish some mission with the available
resources: application end users, application developers,
system administrators, and managers. We believe users
want to focus on their jobs, e.g., their applications, and
not on the underlying grid “plumbing” and infrastructure.
Thus, for example, to run an application a user may type

legion_run my_application my_data

at the command shell. The grid should then take care of
such details as finding an appropriate host on which to

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

238

execute the application and moving around data and
executables. Of course, the user may optionally be aware
of and specify or override certain behaviors: for example,
specify an operating system on which to run the job, name
a specific machine or set of machines, or even replace the
default scheduler.

Reduce “activation energy”
One of the typical problems in technology adoption is
getting users to use it. If it is difficult to shift to a new
technology, users will tend not to make the effort to try it
unless their need is immediate and extremely compelling.
This problem is not unique to grids—it is human nature.
Therefore, one of our most important goals was to make
grid technology easy to use; in chemistry terms, we kept
the activation energy of adoption as low as possible. Thus,
users can easily and readily realize the benefit of using
grids and get the reaction going, creating a self-sustaining
spread of grid use throughout the organization. This
principle manifests itself in features such as “no
recompilation” for applications to be ported to a grid and
in support for mapping a grid to a local OS file system.
Another variant of this concept is the motto “No play,
no pay.” The basic idea is that if a user does not need a
feature, e.g., encrypted data streams, fault-resilient files,
or strong access control, they should not have to pay the
overhead of using it.

Do no harm
To protect their objects and resources, grid users and sites
require grid software to run with the lowest possible
privileges.

Do not change host operating systems
Organizations will not permit their machines to be used if
their operating systems must be replaced. Our experience
with Mentat [19] indicates, though, that building a grid
on top of host operating systems is a viable approach.
Furthermore, Legion must be able to run as a user-level
process and not require root access. Overall, the
application of these design principles at every level
provides a unique, consistent, and extensible framework
upon which to create grid applications.

Globus requirements
The philosophy underlying Globus can be found in the
technical literature available on Globus and in several
public pronouncements by key members of the design
team. In this section, we describe the Globus philosophy
by providing a structure similar to that of the previous
section, which described the Legion philosophy. Again,
we focus on GT2, not GT3, which is under development
at the time of this writing. We first discuss Globus
requirements, using the same list as for Legion, and this

is followed by a discussion of Globus design principles.
We show that there are many differences between Legion
and Globus, both in the overall design principles and in
the emphasis and approach to each of the requirements.
The requirements are presented in the following sections.

Security
Security is an important facet of the Globus approach;
both Legion and Globus have recognized and agreed that
there will be diverse security mechanisms and policies
in any grid. Globus addresses authentication and
data integrity, but intentionally does not define an
authorization model. Instead, Globus explicitly defers
authorization to the underlying operating system.

Global name space
Naming is a key philosophical difference between Legion
and Globus. The Globus approach is that a global
name space is not a requirement for grids; rather, the
combination of local naming mechanisms [e.g., UNIX**
file system and UNIX process identifications (IDs)],
uniform resource locators (URLs) (used to locate remote
files), Internet Protocol (IP) addresses and the Domain
Name System (DNS) (for naming remote resources), and
Domain Names (DNs) (for humans) is sufficient. Location
transparency is not a goal.

Fault tolerance
While both grid projects recognize that the system must
be fault-tolerant, they differ in the degree to which the
grid infrastructure itself masks the failures or errors.
Globus focuses on low-level protocols for grid computing,
arguing that the creation of robust, core low-level
protocols enables other projects to create higher-level
tools and protocols that will mask faults. Therefore, the
Globus approach is not necessarily to implement fault
tolerance, but rather to facilitate it.

Accommodating heterogeneity
Both projects agree that accommodating heterogeneity
is a fundamental requirement.

Binary management and application provisioning
This requirement is viewed as a higher-level function and
is therefore not directly part of the Globus Toolkit.

Multilanguage support
Both projects agree that multiple languages must be
supported.

Scalability
While both projects recognize the need for scalability, the
mechanisms and/or focus of scalability differ significantly.
Since Legion provides more high-level services (a grid-

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

239

enabled distributed file system, an integrated grid
scheduler for all grid activities, etc.) than Globus, the
Legion developers have had to deal directly with issues
of scalability more often than the Globus developers.
Since the Globus Toolkit focus has been “closer to the
hardware,” in many ways the scalability of Globus is a
direct result of the scalability of the Internet. However,
clearly both projects believe that scalability is an
important issue.

Persistence
Persistence, much like scalability, is achieved in different
ways in Legion and Globus. Generally, the approach in
Legion is that persistence in grids requires grid-specific
mechanisms, whereas persistence in Globus is largely
achieved through non-grid-specific means, such as inetd
(a Berkeley daemon program that listens for connection
requests or messages for certain ports and starts server
programs to perform the services associated with those
ports). When a Globus user logs on to the grid, he
realizes that he can access prior days� data because he
knows where he left it and he knows that gridftpd is
available there.

Extensibility
The toolkit approach explicitly allows for extensibility; as
new requirements are identified, new toolkit components
can be created. Arguably, however, individual users should
not be able to choose a particular toolkit component and
then reimplement or customize it for their individual
requirements. In Legion, every functionality is
intentionally extensible through the object-based design.
In practice, this extensibility is achieved by means of
operator overloading, inheritance, and (republishing) a
new, open interface if the default implementation is not
sufficient.

Site autonomy
Both projects are in close agreement on the need for
strong site autonomy. In fact, both projects have devoted a
significant amount of time arguing that being part of a grid
does not mean that users can execute anything they want
on any site. Rather, it is crucial that sites do not have to
give up any rights to participate in a grid.

Complexity management
It is not clear to what extent Globus incorporates
complexity management as a fundamental requirement
of the grid infrastructure. For example, Globus users
are expected to remember a lot more than Legion users
(where their computations are currently executing, where
their files are, etc.). In other words, if a Globus user
cannot remember where certain files are, it is not clear
how they might be found. In contrast, a Legion user is

presented a location-independent, distributed file system
abstraction, which is searchable. Although Legion users
can find the physical locations of files if they wish to, we
argue that the physical location is not actually what users
do want. Abstracting the physical location of a resource is
part of complexity management.

Globus design principles
Given that there are differences with regard to the focus
and attainability of the requirements, it is not surprising
that the guiding principles are different for the Legion
project and the Globus project. From our interpretation,
the philosophy of Globus is based on the following
principles.

Provide a toolkit from which users can pick and choose
A set of architectural principles is not necessary, because
it ultimately restricts the development of “independent
solutions to independent problems.” Similarly, having
all components share some common mechanisms and
protocols (perhaps above intellectual property) restricts
individual development and the pick-and-choose
deployment possibilities. By contrast, Legion developers
believe that there is a core set of protocols that are
fundamental to most grid services; as such, most new
components in Legion should, to some degree, reuse
the core protocols and functionality. This is perhaps
the single biggest difference in philosophies between
the two projects.

Focus on low-level functionality, thereby facilitating high-level
tools (and general usability)
Globus is based on the principles of the “hourglass
model.” In the Globus architecture, the neck of the
hourglass consists of the resource and connectivity
protocols. Since the lower-level protocols are so critical to
the success of the grid, the focus within the core Globus
project itself is on these protocols. Other projects can
then build higher-level services, such as a file replica
manager and grid schedulers. In Legion, we believe
that these higher-level functionalities are absolutely
critical for the usability of the grid, so we provide default
implementations (which can be replaced) of many of these
higher-level functionalities.

Use standards whenever possible for both interfaces and
implementations
The Globus developers have been very diligent in
identifying candidate existing software or protocols that
might be appropriate for grid computing, albeit with some
necessary modifications. Key examples are a reliance on
File Transfer Protocol (FTP) for data movement, Public
Key Infrastructure (PKI) for authentication [and the
Generic Security Services Application Programming

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

240

Interface (GSSAPI) as an API authentication], OpenSSL
(an open implementation of the Secure Sockets Layer)
for low-level cryptographic routines, and Lightweight
Directory Access Protocol (LDAP) as the basis for
information services. In contrast, Legion uses existing
standards whenever possible; however, we have decided
that certain standards, such as GSSAPI, are not
necessarily appropriate, either because of limited
endorsement outside the grid community, because their
complexity was judged to be not worth the potential value,
or because ultimately there was not a smooth fit (even
with modifications) between the interface/protocol and
the unique, heterogeneous, dynamic nature of grids.

Emphasize the identification and definition of protocols and
services first, and APIs and software development kits next
The contribution of Globus, in some sense, is not the
software, but rather the protocol: A standards-based
open architecture facilitates extensibility, interoperability,
portability, and code sharing; standard protocols make it
easy to define services that provide enhanced capabilities
[33]. Protocols are essential for interoperability. In
contrast, the Legion emphasis has been, arguably, on the
software itself. While we believe that the success of this
approach is our ability to deliver a highly usable software
product, historically we have not placed a strong emphasis
on direct interoperability with other grid approaches. This
emphasis is changing, particularly within Avaki** (for
more on Avaki, see the section on Legion future
directions).

Provide open-source community development
Recognizing the tremendous impact of the open-source
movement, particularly Linux**, Globus has always
strongly endorsed an open-source community development
for the Globus Toolkit. Legion has been open-source for
much of its development; however, we have generally
found that in practice people would rather have deployable
binary versions than source code itself.

Provide immediate usefulness
Legion required a sophisticated, working core functionality
that would be utilized in many grid services. As such, it
was very difficult to deliver only pieces of a grid solution
to the community, so we could not provide immediate
usefulness to the community without the entire product.
In contrast, Globus recognized that certain short-term
problems (such as single sign-on) could largely be solved
by a small number of software artifacts. The result was
that Globus provided immediate usefulness to the grid
community. Other examples of this kind of immediate
usefulness include the following:

● For computation, focusing on high-performance
application requirements.

● For data, focusing on replicated, large datasets
essentially accessible by FTP, downplaying the
importance of nonlocal access to small files.

● Focusing on authentication instead of authorization.
● Treating computation differently from data, and

promoting separate computational grids and data grids.

Do not provide a virtual machine abstraction
Apparently the virtual machine abstraction was considered
in the early days of the Globus project. However, the
virtual machine abstraction was viewed as an inappropriate
model, . . . inconsistent with our primary goals of broad
deployment and interoperability. 5 Additionally, the . . .
traditional transparencies are unobtainable [33]. In
contrast, in the Legion project, the virtual machine is
precisely what is needed to mask complexity in the
environment. This was a fundamental difference in
the approach taken by Legion and the GT2 project.

Overall, while arguably the requirements are equivalent
for Legion and Globus, the emphasis on these requirements
within each project is quite different. More significantly,
the principles of each project as discussed in this section
clearly indicate the stark differences in how to best achieve
the goals. In the next section, we provide more details on
how each project attempts to satisfy the requirements
of grid computing.

4. Architectural details
As is obvious from the previous sections, Legion and
Globus overlap significantly in their goals. In fact, the
overlap between these projects is far greater than the
overlap between either of them and any of the queuing
systems or parallel systems mentioned in the background
section. As discussed above, the philosophical and
architectural differences between Legion and Globus
are significant. In this section, we further contrast those
differences by providing details on the implementation
of each system.

Legion architectural details
Legion started out with the top-down premise that a
strong architecture is necessary to build an infrastructure
of this scope. This architecture is based on communicating
services, which are implemented as objects. An object is a
stateful component in a container process. Much of the
initial design time spent on Legion was to determine the
underlying infrastructure and the set of core services over

5 This principle of not providing a virtual machine abstraction has been a
consistent theme in the design of Globus Toolkit 2 (GT2). In Globus Toolkit 3
(GT3), this theme has been discarded in favor of a container model that is
essentially a virtual machine.

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

241

which grid services could be built [34 –37]. Tasks involved
in this design included the following:

● Designing and implementing a three-level naming,
binding, and communication scheme. Naming is crucial
in distributed systems and grids. The Legion scheme
includes human-readable names such as attributes and
directory-based pathnames to name objects (abstract
names that do not include any location, implementation,
or “number” information), and concrete object
addresses.

● Building a remote method invocation framework based
on dataflow graphs.

● Adding a security layer to every instance of communication
between any services.

● Adding fault-tolerance layers.
● Adding layers for resource discovery through naming

and adding mechanisms for caching name bindings
(examples of bindings being IP addresses and ports for
processes corresponding to services).

Legion designers have always believed that new services
and tools must be built on top of a well-defined
architecture. Much of the later development in Legion
has been in terms of adding new kinds of services (two-

dimensional files, specialized schedulers, firewall proxies,
file export services, etc.) or tools that invoke methods of
services (running an application [38], running parameter-
space applications [39, 40], using a Web portal [41], etc.).

In Figure 1, we show a layered view of the Legion
architecture. The bottom layer is the local operating
system, or execution environment layer. This corresponds
to true operating systems such as Linux, IBM AIX*, and
Microsoft Windows NT/2000. The bottom layer, along with
parts of the layers above, is also addressed by containers
in hosting environments such as Sun Java** 2 Enterprise
Edition (J2EE). We depend on process management
services, file system support, and inter-process
communication services delivered by the bottom layer,
e.g., User Datagram Protocol (UDP), Transmission
Control Protocol (TCP), or shared memory. Above
the local operating services layer we build the Legion
communications layer. This layer is responsible for object
naming and binding as well as delivering sequenced
arbitrarily long messages from one object to another.
Delivery is accomplished regardless of the location of
the two objects, object migration, or object failure. For
example, object A can communicate with object B even
while object B is migrating from Charlottesville to San
Diego, or even if object B fails and subsequently restarts.

Figure 1

The Legion architecture viewed as a series of layers.

Legion naming and communications

Location/migration transparency, reliable, sequenced message delivery

Local OS services

Process management, file system, interprocess communication (UDP/TCP, shared memory)

(UNIX variants and Microsoft Windows NT**/2000)

Security layer

Encryption, digesting, mutual authentication, access control

Core object layer

Program graphs, RPC, interface discovery, metadata management, events

Host services

 • Start/stop object

 • Binary cache management

Vault services

 • Persistent state management

Basic object management

 • Create/destroy

 • Activate/deactivate, migrate

 • Scheduling

System services• Job proxy manager

• Schedulers

• Message logging

• Firewall proxy

• Replicated objects

• Fault-tolerance

• Metadata databases

• Implementation registration

• Authentication objects

• Binding agents

• Teletypewriter (TTY) objects

High-performance tools

 • Remote execution of legacy applications

 • Parameter-space tools

 • Cross platform/site MPI

Data grid/file system tools

 • NFS proxy—transparent access

 • Directory “sharing”

 • Extensible files, parallel 2D

System management tools

 • Add/remove host

 • Add/remove user

 • System status display

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

242

This is possible because of the Legion three-level naming
and binding scheme, in particular the lower two levels.

The lower two levels consist of location-independent
abstract names called Legion object identifiers (LOIDs)
and object addresses specific to communication protocols,
e.g., an IP address and a port number. The binding
between a LOID and an object address can and does
change over time. Indeed, it is possible for there to be no
binding for a particular LOID at times when, for example,
the object is not running currently. Maintaining the
bindings at run time in a scalable way is one of the most
important aspects of the Legion implementation [29].

Next is the security layer on the core object layers. The
security layer implements the Legion security model
[42, 43] for authentication, access control, and data
integrity (e.g., mutual authentication and encryption on
the wire). The core object layer [29, 31, 32] addresses
method invocation, event processing (including exception
and error propagation on a per-object basis [44]),
interface discovery, and the management of metadata.
Objects can have arbitrary metadata, such as the load on a
host object or the parameters that were used to generate a
particular data file.

Above the core object layer are the core services [29]
that implement object instance management (class
managers) and abstract processing resources (hosts), and
storage resources (vaults). These are represented by base
classes that can be extended to provide different or
enhanced implementations. For example, the host class
represents processing resources. It has methods to start an
object given a LOID, a persistent storage address, and the
LOID of an implementation to use, stop an object given a
LOID, kill an object, and so on. There are derived classes
for UNIX and Microsoft Windows** called UNIXHost
and NTHost that respectively use UNIX processes and
Windows spawn. There are also derived classes that
interact with back-end queuing systems, BatchQueueHost,
and that require the user to have a local account and run
as that user, PCDHost [43, 45]. There are similar sets
of derived types for vaults and class managers that
implement policies (for example, replicated objects for
fault tolerance or stateless objects for performance and
fault tolerance [26, 44]) and interact with different
resource classes.

Above these basic object management services are a
whole collection of higher-level system service types and
enhancements to the base service classes. These include
classes for object replication for availability [44], message-
logging classes for accounting or postmortem debugging,
firewall proxy servers for securely transiting firewalls,
enhanced schedulers [34], databases, called collections,
that maintain information on the attributes associated
with objects (these are used extensively in scheduling),

job proxy managers that “wrap” legacy codes for remote
execution [38, 40], and so on.

Finally, an application support layer contains user-
centered tools for parallel and high-throughput computing,
data access and sharing, and system management.

In the high-performance tool set there are tools to wrap
legacy codes (legion_register_program) and execute
them remotely (legion_run) both singly and in large
sets (as in a parameter-space study [40]). Legion MPI
tools support cross-platform, cross-site execution of MPI
programs [39], and basic Fortran support [30] tools wrap
Fortran programs for running on a grid.

The Legion integrated data grid support is focused
on both extensibility and reducing the burden on the
programmer [46 – 48]. In terms of extensibility, there
is a basic file type (BasicFile) that supports the usual
functions: read, write, stat, seek, etc. All other
file types are derived from this type. Thus, no matter the
file type, it can still be treated as a basic file and, for
example, piped into tools that expect sequential files.
There are two-dimensional files that support read/write
operations on columns, rows, and rectangular patches of
data (both primitive types as well as “structs”). There are
file types to support unstructured sparse data, as well as
parallel files in which the file has been broken up and
decomposed across several different storage systems.

Data can be moved into the grid by either of two
methods. It can be copied into the grid, in which case
Legion manages the data and decides where to place it,
how many copies to generate for higher availability, and
where to place those copies. Alternatively, data can be
exported into the grid. When a local directory structure
is exported into the grid, it is mapped to a chosen path
name in the global name space (directory structure). For
example, a user can map data/sequences in his local UNIX
file system into /home/grimshaw/sequences using the
legion_export_dir command, legion_export_dir
data/sequences /home/grimshaw/sequences.
Subsequent access from anywhere in the grid (whether
read or write) is done directly against the files in the
user�s UNIX file system (subject to access control, of
course).

To simplify ease of use, the data grid can be accessed
via a daemon that implements the Network File System
(NFS) protocol. Therefore, the entire Legion namespace,
including files, hosts, and so forth, can be mapped into
local OS file systems. Thus, shell scripts, Perl scripts, and
user applications can run unmodified on the Legion data
grid. Further, the usual UNIX commands such as ls
work, as does Microsoft Windows Exploring (which
shows the directory structure and files.).

Finally, there are the user portal and system-
management tools to add and remove users, add and
remove hosts, and join two separate Legion grids together

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

243

to create a grid of grids, etc. There is a Web-based portal
interface for access to Legion [41] and a system status
display tool that gathers information from system-wide
metadata collections and makes it available via a browser
(Figure 2).

The Web-based portal (Figures 3– 6) allows an
alternative, graphical interface to Legion. Using this
interface (Figure 3), a user can submit an Amber job (a three-
dimensional molecular modeling code) to NPACI-net
(a University of Virginia Legion network) and not care
at all where it executes. In Figure 4, we show the portal
view of the intermediate output, where the user can copy
files out of the running simulation and in which a three-
dimensional molecular visualization plug-in called Chime
is being used to display the intermediate results.

In Figure 5, we display the Legion job status tools.
Using these tools, users can determine the status of all
of the jobs they have started from the Legion portal
and access their results as needed.

In Figure 6, we show the portal interface to the
underlying Legion accounting system. We believed from
very early on that grids must have strong accounting or
they will be subject to the classic tragedy of the commons,
in which everyone is willing to use grid resources, yet no

one is willing to provide them. Legion keeps track of who
used which resource (CPU, application, etc.), starting
when, ending when, with what exit status, and with how
much resource consumption. The data is loaded into a
relational database management system, and various
reports can be generated.

Globus architectural details
Globus started out with the bottom-up premise that a grid
must be constructed as a set of tools developed from user
requirements. This architecture is based on composing
tools from a kit. Consequently, much of the initial design
time was spent determining the user requirements for
which grid tools could be built. Tasks involved in this
design included building a resource manager to start jobs
(assuming users had procured accounts beforehand on all
of the machines on which they could possibly run), a tool
and API for transferring files from one machine to
another (used for binary and data transfer), tools for
procuring credentials and certificates, and a service for
collecting resource information about machines on a grid.
The designers of Globus have always believed that new
services and tools must be added to the existing set in
such a way that users can combine any of the available

Figure 2

Legion system monitor running on NPACI-net in 2000 with the USA site selected. Clicking on a site opens a window for that site, with the

individual resources listed. Sites can be composed hierarchically. Those resources, in turn, can be selected, and then individual objects are

listed. POWER is a function of individual CPU clock rates and the number and type of CPUs. AVAIL is a function of CPU power and

current load; it is what is available for use.

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

244

tools to get their work done. Much of the later development
in Globus has been directed at composing these tools in
order to achieve a specific goal.

In Figure 7, we show the early version (1997) of GT2,
the Globus Toolkit, version 2 (adapted from Foster and
Kesselman [49]). The communications module provides
network-aware communications messaging capabilities.
The implementation of the communications module in the
Globus Toolkit was called Nexus [2]. The resource location
and allocation module provides mechanisms for expressing
application resource requirements for identifying resources
that meet these requirements and for scheduling resources
after they have been located. The authentication module
provides a means by which to verify the identity of both
humans and resources. In the Globus Toolkit, the GSSAPI
was utilized in an attempt to make it unnecessary to know
the actual underlying authentication technique, be it
Kerberos (a centralized authentication system developed
at MIT) or SSL (PKI). The information service module
provides a uniform mechanism for obtaining real-time
information about metasystem structure and status. The
implementation of this module in the Globus Toolkit is

called the Metacomputing Directory Service (MDS) [50],
which builds upon the data representation and API
of LDAP. The data access module is responsible for
providing high-speed remote access to persistent storage,
such as files. All of these modules lay on top of local OS
services, as in Legion. Higher-level services utilize the
components of the toolkit. Such higher-level services
include parallel programming interfaces (e.g., MPICH/G2,
an open implementation of the MPI standard developed
at Argonne National Laboratory).

A more recent description of the Globus Toolkit,
reflecting the evolution of the approach, is shown in
Figure 8 (adapted from Foster, Kesselman, and Tuecke
[33]). At the bottom is the grid fabric layer, which
provides the resources to which grid protocols mediate
access. The Globus developers consider this to be
generally lower than the components of the toolkit, with
the exception of the Globus Architecture for Reservation
and Allocation (GARA). The connectivity layer defines
the core communication and authentication protocols
required for grid-specific network transactions. Included
in this layer from the Globus Toolkit is the Grid Security

Figure 3

Job submission window for Amber using the Legion Web portal.

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

245

Infrastructure (GSI) [51]. Above this is the resource layer,
which defines protocols for secure negotiation, initiation,
monitoring, control, accounting, and payment of sharing
operations on individual resources. The Globus Toolkit
functionality at this level includes a Grid Resource
Information Protocol (GRIP), a resource information
protocol; the Grid Resource Registration Protocol
(GRRP), used to register resources with the Grid Index
Information Servers; the Grid Resource Access and
Management (GRAM) protocol, used to allocate and
monitor resources; and GridFTP, which is used for data
access. The collective layer is used to coordinate access to
multiple resources, which, in terms of the Globus Toolkit,
refers to MetaComputing Directory Service (MDS),
supported by GRRP and GRIP. Finally, grid applications
are at the very top.

Overall, the benefits and risks of either approach to
software design—top-down or bottom-up—are well-known.
With respect to grids, a bottom-up approach tends to
result in early successes simply because the approach
targets immediate user requirements. However, a risk with

this approach is that the infrastructure may not be able to
accommodate changing requirements. Another risk is that
this approach may not scale as the number of tools or
services increases, since an increasing number of pairwise
protocols are necessary to ensure that the tools compose
seamlessly. In contrast, the risk with a top-down approach
is that initial successes are hard to come by, because
at the beginning, designers focus on building an
infrastructure with little or no end-user capability.
Another risk is that the infrastructure being built
could itself be so divergent from what users need that
subsequent tools will not be useful. However, if the
infrastructure is designed well, it tends to be flexible and
amenable to a variety of tools and interfaces, all built over
a common substrate. Moreover, the implementation of a
new service or tool tends to be quick, since much of the
complexity of the underlying substrate is abstracted away.

5. Future directions
Grid technology is becoming mature enough to move
out of the indulgent environment of academia into the

Figure 4

Chime plug-in displays updated molecule and application status.

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

246

demanding world of commercial usage. In a commercial
environment, nontechnological concerns such as standards
acceptance, support personnel, open sources, and
deployment model compete with the technological
issues that we have discussed so far. Grids are large,
infrastructure-style deployments. Therefore, while
much of the technological discussion of the last decade
or so has been valuable, it may now be time to focus on
nontechnological issues as well. In this section, we present
the initial approach of Legion and Globus to deployments
and standards.

Legion future directions
From the outset of the Legion project, a technology
transfer phase had been envisioned in which the
technology would be moved from academia to industry.
We felt strongly that grid software would move into
mainstream business computing only with commercially

supported software, help lines, customer support, services,
and deployment teams. In 1999, Applied MetaComputing
was founded to carry out the technology transition
of Legion. In 2001, Applied MetaComputing raised
$16 million in venture capital and changed its name to
Avaki. The company acquired legal rights to Legion from
the University of Virginia and changed its name to Avaki.
Avaki was released commercially in September 2001. It
is an extremely hardened, trimmed-down, focused-on-
commercial-requirements version of Legion. While the
name has changed, the core architecture and the
principles on which it operates remain the same.

Many of the technological challenges faced by companies
today can be viewed as variants of the requirements of
grid infrastructures. The components of a project or
product— data, applications, processing power, and
users—may be in different locations from one another.
Administrative controls set up by organizations to

Figure 5

Legion job status tools accessible via the Web portal.

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

247

prevent unauthorized accesses to resources hinder
authorized accesses as well. Differences in platforms,
operating systems, tools, mechanisms for running jobs,
data organizations, and so on impose a heavy cognitive

burden on users. Changes in resource usage policies and
security policies affect the day-to-day actions of users.
Finally, large distances act as barriers to the quick
communication necessary for collaboration. Consequently,

Figure 6

Legion accounting tool. Units are normalized CPU seconds. Displays can be organized by user, machine, site, or application. (An LMU is a

Legion Monetary Unit; it is one CPU second normalized by the clock speed of the machine.)

Figure 7

Globus Toolkit circa 1997 (adapted from Foster and Kesselman [49]).

Local OS services

Process management, file system, interprocess communications (UDP/TCP, shared memory)

(UNIX variants and Windows NT/2000)

Globus metacomputing abstract machine

Communications

(Nexus)

Resource

(al)location
Authentication

Information

service

Data

access

Globus

services

Other

services

Globus

Toolkit

modules

Globus

Toolkit

modules

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

248

users spend too much time on the procedures for
accessing a resource and too little time using the resource
itself. These challenges lower productivity and hinder
collaboration.

A successful technology is one that can smoothly make
the transition from the comfort and confines of academia
to the demanding commercial environment. Several
academic projects are testament to the benefits of such
transitions; often, the transition benefits not just the user
community but the quality of the product as well. We
believe that grid infrastructures are ready to make such
a transition. Legion had been tested in nonindustry
environments from 1997 onward, during which time we
had the opportunity to rigorously test the basic model,
scalability, security features, tools, and development
environment. Further improvement required input from
a more demanding community with a vested interest in
using the technology for its own benefit. The decision to
commercialize grids in the form of the Avaki 2.x product
and beyond was inevitable.

Despite changes to the technology enforced by the push
to commercialization, the basic technology in Avaki 2.x
remains the same as Legion. All of the principles and
architectural features discussed earlier continue to form
the basis of the commercial product. As a result, the
commercial product continues to meet the requirements
outlined in the introduction. These requirements follow
naturally from the challenges faced by commercial clients
who attempt to access distributed, heterogeneous
resources in a secure manner.

Beyond commercialization of the Legion technology
in Avaki, the Legion team is focusing on issues of fault
tolerance (autonomic computing) and security policy
negotiation across organizations. This work is being done
in the context of the open standards put forth by the
Global Grid Forum (GGF): Open Grid Services
Infrastructure (OGSI) and Open Grid Services
Architecture (OGSA).

Globus future directions
As with Legion, the earlier days of Globus were largely
characterized as being focused on interconnecting
supercomputer centers across geographic boundaries more
easily. As such, the community being courted by Globus
was largely composed of U.S. Department of Energy sites
and National Science Foundation sites (i.e., academic
settings).

This situation began to change, at least by early 2001,
when Globus began to seize upon opportunities outside
the national labs and academia. On August 2, 2001, IBM
made an announcement regarding their support of the
U.K. E-science effort, in which the first open IBM support
for the Globus project was announced. Later that year, at
Supercomputing 2001, the Globus project announced the

equivalent of “strategic partnerships” with 12 vendors
(Compaq, Cray, SGI, Sun, Veridian, Fujitsu, Hitachi,
NEC, Entropia, IBM, Microsoft, and Platform Computing).

On April 12, 2002, Globus 2.0 was officially announced
(a public beta version of Globus 2.0 was available as of
November 15, 2001). Globus 2.0 is the basis for a number
of grid activities, including the NSF Middleware Initiative
(NMI), the E.U. DataGrid, and Grid Physics Network
(GriPhyN) Virtual Data Toolkit (VDT).

A major development with regard to the future of the
Globus Toolkit occurred on February 20, 2002, when the
Globus Project and IBM announced their intention to
create a new set of standards that would more closely
integrate grid computing with Web services. This set
of standards is the OGSA. This effort has since seen
significant success and is now community-based and
homed in the Global Grid Forum (see the next section
for a more complete discussion). In January 2003, at
GlobusWorld 2003, the Globus project announced the
beta of the first version of the Globus Toolkit, GT3,
to be OGSI-compliant.

6. Relationship to upcoming standards
OGSI Version 1.0 [52] and OGSA [53] are standards
emerging from the GGF. These are the prevailing
standards initiatives in grid computing and will, in our
opinion, define the future of grid computing.

OGSI extends Web services via the definition of grid
services. In OGSI, a grid service is a Web service that
conforms to a particular set of conventions [54]. For
example, grid services are defined in terms of standard
Web Services Description Language (WSDL) [55–57] with

Globus Toolkit circa 2001, in the context of the Grid Protocol

Architecture (adapted from Foster, Kesselman, and Tuecke [33]).

(MDS: MetaComputing Directory Service; GRIP: Grid Resource

Information Protocol; GRRP: Grid Resource Registration Protocol;

GRAM: Grid Resource Access and Management; GridFTP: used

for data access; GSI: Grid Security Infrastructure; and GARA:

Globus Architecture for Reservation and Allocation.)

Figure 8

Fabric (local mechanisms, GARA)

Connectivity (GSI)

Resource (GRIP, GRRP, GRAM, GridFTP)

Collective (MDS)

Application

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

249

some extensions, and exploit standard Web service binding
technologies such as Simple Object Access Protocol
(SOAP) [58 – 60] and Web Services Security (WS-Security).
However, this set of conventions fundamentally sets grid
services apart from Web services. Grid services introduce
three fundamental differences:

● Grid services provide for named service instances
and have a two-level naming scheme that facilitates
traditional distributed systems transparencies.

● Services have a minimum set of capabilities, including
discovery (reflection) services.

● There are explicitly stateful services with lifetime
management.

OGSI has been developed in the OGSI working group
in the GGF. The specification emerged from the standards
process in the second quarter of 2003. It was submitted to
the GGF editor as a recommendation track document and
is now undergoing public comment. OGSI will be the basic
interoperability layer (in terms of RPC, discovery, etc.) for
a rich set of higher-level services and capabilities that are
collectively known as the OGSA.

OGSA is being developed in the OGSA working group
of the GGF, an umbrella working group within the GGF.
The OGSA working group will spin off working groups to
develop specialized service standards that, together, will
realize a metaoperating system environment. The first of
these working groups to form is the OGSA Security
working group. Working groups on topics such as
resources (hosts, storage, etc.), scheduling, replication,
logging, management interfaces, and fault tolerance are
anticipated.

The Legion authors enthusiastically support the OGSI
effort. We support the OGSI/A standards efforts of the
GGF for two primary reasons: the congruence of the
OGSA with the Legion architecture and the importance
of standards to users. The OGSA is highly congruent with
both the existing Legion architecture and our architectural
vision for the future. This congruence is not surprising
given that both OGSA and Legion have the same
objective: to create a metaoperating system for the grid.
Our objective in building and designing Legion was

. . . to provide a solid, integrated, conceptual foundation
on which to build applications that unleash the
potential of so many diverse resources. The
foundation must at least hide the underlying physical
infrastructure from users and from the vast majority
of programmers, support access, location, and fault
transparency, enable inter-operability of components,
support construction of larger integrated components
using existing components, and provide a secure

environment for both resource owners and users, and
it must scale to millions of autonomous hosts [1].

This vision is the mantra of OGSA as well. The means
to the end are similar in both cases, and include the
definition of base class services for basic building blocks
of grids, hosts, storage, security, usage policies, failure
detection mechanism, and failure recovery mechanisms
and policies, e.g., replication services, and so on. The
major architectural difference is in the RPC mechanism.
OGSA and OGSI are based on Web services standards—
SOAP/Extensible Markup Language (XML), WSDL,
etc.—standards that did not exist when Legion was begun.

7. Summary
Legion and Globus are pioneering grid technologies. Both
technologies share a common vision of the scope and
utility of grids. To an outsider, i.e., a person interested in
grids but not intimately familiar with either project, the
differences between the two projects are unclear. Indeed,
over the years, the authors of this paper have had to
explain the differences several times in settings ranging
from conference talks to informal dinner-table discussions.
Doubtless, the architects of Globus have had similar
experiences. This paper is an attempt at explaining those
differences clearly.

The objective of this paper is not to disparage either of
the two projects, but rather to contrast their architectural
and philosophical differences, and thus educate the grid
community about the choices available and the reasons
why they were made at each step of the design. What
is especially satisfying is the fact that the two projects
are now converging toward a common, best-of-breed
architecture that is certain to benefit designers and
users of grid systems. Such a convergence would not
have been possible without the rivalry of earlier days.

Acknowledgments
This work was partially supported by DARPA (Navy)
Contract No. N66001-96-C-8527, DOE Grant DE-FG02-
96ER25290, DOE Contract Sandia LD-9391, Logicon (for
the DoD HPCMOD/PET program) DAHC 94-96-C-0008,
DOE D459000-16-3C, DARPA (GA) SC H607305A, NSF-
NGS EIA-9974968, NSF-NPACI ASC-96-10920, and a
grant from NASA-IPG.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the University of
Chicago, Global Grid Forum, Object Management Group,
Inc., Entropia. Inc., United Devices, Parabon Computation,
Inc., Sun Microsystems, Inc., The Open Group, Avaki
Corporation, Linus Torvalds, or Microsoft Corporation.

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

250

References
1. A. S. Grimshaw, “Enterprise-Wide Computing,” Science

256, 892– 894 (August 1994).
2. I. Foster, C. Kesselman, and S. Tuecke, “The Nexus Task-

Parallel Runtime System,” Proceedings of the First
International Workshop on Parallel Processing, Bangalore, India,
1994, pp. 457– 462.

3. I. Foster and C. Kesselman, Computational Grids, The
Grid: Blueprint for a New Computing Infrastructure,
Morgan-Kaufmann Publishers, Inc., Los Altos, CA, 1999.

4. I. Foster, “What Is the Grid? A Three Point Checklist,”
GridToday 1, No. 6 (July 2002); see http://
www.gridtoday.com/02/0722/020722.html.

5. W. Gentzsch, “Response to Ian Foster�s ‘What Is the
Grid?,’” GridToday 1, No. 8 (August 5, 2002); see
http://www.gridtoday.com/02/0805/020805.html.

6. A. Beck, Ed., “An Interview with Entropia�s Andrew
Chien,” GridToday 1, No. 5 (July 15, 2002); see http://
www.gridtoday.com/02/0715/100110.html.

7. A. S. Grimshaw, A. Natrajan, M. A. Humphrey, M. J.
Lewis, A. Nguyen-Tuong, J. F. Karpovich, M. M. Morgan,
and A. J. Ferrari, “From Legion to Avaki: The
Persistence of Vision,” Grid Computing: Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and T. Hey,
Eds., John Wiley & Sons, Hoboken, NJ, 2002; ISBN:
0-470-85319-0.

8. B. A. Kingsbury, “The Network Queueing System (NQS),”
Technical Report, 1992, Sterling Software, 1121 San
Antonio Road, Palo Alto, CA 94303; see http://
www.gnqs.org/oldgnqs/docs/papers/mnqs_papers/
original_cosmic_nqs_paper.htm.

9. A. Bayucan, R. L. Henderson, C. Lesiak, N. Mann, T.
Proett, and D. Tweten, “Portable Batch System: External
Reference Specification,” Technical Report, November
1999, MRJ Technology Solutions, 10560 Arrowhead Dr.,
Fairfax, VA 22030; see http://www.mrj.com/.

10. S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A
Load Sharing System for Large, Heterogeneous
Distributed Systems,” Software: Pract. & Exper. 23, No. 12,
1305–1336 (December 1993); http://www.cs.ubc.ca/local/
reading/proceedings/spe91-95/spe/spetoc.htm.

11. S. Zhou, “LSF: Load Sharing in Large-Scale
Heterogeneous Distributed Systems,” presented at the
Workshop on Cluster Computing, Tallahassee, FL,
December 1992.

12. International Business Machines Corporation, “IBM
LoadLeveler: User�s Guide,” IBM Corporation,
September 1993.

13. F. Ferstl, “CODINE Technical Overview,” Technical
Report, April 1993, Genias Software, Dr. Gessler Strasse
20, D-93051 Regensburg, Germany; see http://
www.genias.de/.

14. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam, PVM: Parallel Virtual
Machine, MIT Press, Cambridge, MA, 1994.

15. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface,
MIT Press, Cambridge, MA, 1994.

16. T. Anderson, D. Culler, D. Patterson, and the NOW
team, “A Case for NOW (Networks of Workstations),”
IEEE Micro 15, No. 1, 54 – 64 (February 1995).

17. H. Lockhart, Jr., OSF DCE Guide to Developing
Distributed Applications, McGraw-Hill Inc., New York,
1994.

18. A. S. Grimshaw, “Easy to Use Object-Oriented Parallel
Programming with Mentat,” IEEE Computer 26, No. 5,
39 –51 (May 1993).

19. A. S. Grimshaw, J. B. Weissman, and W. T. Strayer,
“Portable Run-Time Support for Dynamic Object-
Oriented Parallel Processing,” ACM Trans. Computer Syst.
14, No. 2, 139 –170 (May 1996).

20. A. S. Grimshaw, A. J. Ferrari, and E. West, “Mentat,”
Parallel Programming Using C��, G. V. Wilson and
P. Lu, Eds., The MIT Press, Cambridge, MA, 1996,
pp. 383– 427.

21. M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor:
A Hunter of Idle Workstations,” Proceedings of the Eighth
International Conference on Distributed Computing Systems,
San Jose, CA, June 1988, pp. 104 –111.

22. D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod:
A Tool for Performing Parameterized Simulations Using
Distributed Workstations,” Proceedings of the Fourth IEEE
International Symposium on High Performance Distributed
Computing (HPDC-�95), Washington, August 1995, pp.
112–121.

23. N. H. Kapadia, R. J. Figueiredo, and J. A. B. Fortes,
“PUNCH: Web Portal for Running Tools,” IEEE Micro
20, No. 3, 38 – 47 (May/June 2000).

24. M. van Steen, P. Homburg, and A. Tanenbaum, “The
Architectural Design of Globe: A Wide-Area Distributed
System,” Internal Report IR-422, March 1997, Vrije
Universiteit Amsterdam, De Boelelaan 1105, 1081 HV
Amsterdam, The Netherlands; see http://www.cs.vu.nl/
�steen/globe/techreps.html.

25. Object Management Group, “The Common Object
Request Broker: Architecture and Specification,”
Technical Report Rev. 2.0, Object Management Group,
Framingham, MA, July 1995 (updated July 1996).

26. A. Nguyen-Tuong, A. S. Grimshaw, and M. Hyett,
“Exploiting Data-Flow for Fault-Tolerance in a Wide-
Area Parallel System,” Proceedings of the 15th
International Symposium on Reliable and Distributed
Systems (SRDS-15), Ontario, Canada, October 1996,
pp. 2–11.

27. C. L. Viles, M. J. Lewis, A. J. Ferrari, A. Nguyen-Tuong,
and A. S. Grimshaw, “Enabling Flexibility in the Legion
Run-Time Library,” Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA �97), Las Vegas,
June 1997, pp. 265–274.

28. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems,”
Proceedings of the IPPS/SPDP �98 Workshop on Job
Scheduling Strategies for Parallel Processing, Orlando, FL,
1998, pp. 62– 82.

29. M. J. Lewis, A. J. Ferrari, M. A. Humphrey, J. F.
Karpovich, M. M. Morgan, A. Natrajan, A. Nguyen-
Tuong, G. S. Wasson, and A. S. Grimshaw, “Support
for Extensibility and Site Autonomy in the Legion Grid
System Object Model,” J. Parallel & Distr. Computing 63,
No. 5, 525–538 (May 2003).

30. A. J. Ferrari and A. S. Grimshaw, “Basic Fortran Support
in Legion,” Technical Report CS-98-11, March 1998,
Department of Computer Science, School of Engineering,
University of Virginia, 151 Engineer�s Way, P.O. Box
400740, Charlottesville, VA 22904; see http://
legion.virginia.edu/papers/CS-98-11.pdf.

31. M. J. Lewis and A. S. Grimshaw, “The Core Legion
Object Model,” Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing
(HPDC-5), Syracuse, NY, August 1996, pp. 551–561.

32. A. Nguyen-Tuong, S. J. Chapin, A. S. Grimshaw, and C.
Viles, “Using Reflection for Flexibility and Extensibility in
a Metacomputing Environment,” Technical Report 98-33,
November 1998, Department of Computer Science, School
of Engineering, University of Virginia, 151 Engineer�s
Way, P.O. Box 400740, Charlottesville, VA 22904; see
http://legion.virginia.edu/papers/CS-98-33.rge.pdf.

33. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,” Int. J.
Supercomputer Appl. 15, No. 3, 200 –222 (2001).

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

251

34. S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S.
Grimshaw, “Resource Management in Legion,” Future
Generation Computer Syst. 15, No. 5/6, 583–594 (October
1999).

35. A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver,
and P. F. Reynolds, Jr., “Legion: The Next Logical Step
Toward a Nationwide Virtual Computer,” Technical
Report CS-94-21, June 1994, Department of Computer
Science, School of Engineering, University of Virginia,
151 Engineer�s Way, P.O. Box 400740, Charlottesville, VA
22904; see http://legion.virginia.edu/papers/CS-94-21.pdf.

36. A. S. Grimshaw and W. A. Wulf, “Legion—A View from
50,000 Feet,” Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing,
Syracuse, NY, August 1996, pp. 89 –99.

37. A. S. Grimshaw, J. B. Weissman, E. A. West, and E.
Loyot, “Metasystems: An Approach Combining Parallel
Processing and Heterogeneous Distributed Computing
Systems,” J. Parallel & Distr. Computing 21, No. 3, 257–
270 (June 1994).

38. A. Natrajan, M. A. Humphrey, and A. S. Grimshaw,
“Capacity and Capability Computing Using Legion,”
Proceedings of the 2001 International Conference on
Computational Science, San Francisco, May 2001, pp.
273–283.

39. A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. A.
Humphrey, A. J. Fox, A. S. Grimshaw, and C. L. Brooks
III, “Studying Protein Folding on the Grid: Experiences
Using CHARMM on NPACI Resources Under Legion,”
Proceedings of the 10th International Symposium on High
Performance Distributed Computing (HPDC), San
Francisco, August 2001, pp. 14 –21.

40. A. Natrajan, M. A. Humphrey, and A. S. Grimshaw, “The
Legion Support for Advanced Parameter-Space Studies on
a Grid,” Future Generation Computer Syst. 18, No. 8,
1033–1052 (October 2002).

41. A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, M.
Herrick, B. P. Clarke, and A. S. Grimshaw, “The Legion
Grid Portal,” Grid Computing Environments, Concurrency
and Computation: Pract. & Exper. 14, No. 13/15, 1365–
1394 (2001).

42. S. J. Chapin, C. Wang, W. A. Wulf, F. C. Knabe, and
A. S. Grimshaw, “A New Model of Security for
Metasystems,” Future Generation Computer Syst. 15, No.
5/6, 713–722 (October 1999).

43. M. A. Humphrey, F. C. Knabe, A. J. Ferrari, and A. S.
Grimshaw, “Accountability and Control of Process
Creation in Metasystems,” Proceedings of the 2000 Network
and Distributed Systems Security Conference (NDSS�00),
San Diego, February 2000, pp. 209 –220.

44. A. Nguyen-Tuong and A. S. Grimshaw, “Using Reflection
for Incorporating Fault-Tolerance Techniques into
Distributed Applications,” Parallel Processing Lett. 9, No.
2, 291–301 (1999).

45. A. J. Ferrari, F. C. Knabe, M. A. Humphrey, S. J. Chapin,
and A. S. Grimshaw, “A Flexible Security System for
Metacomputing Environments,” Proceedings of the Seventh
International Conference on High-Performance Computing
and Networking Europe (HPCN�99), Amsterdam, April
1999, pp. 370 –380.

46. B. S. White, A. S. Grimshaw, and A. Nguyen-Tuong,
“Grid-Based File Access: The Legion I/O Model,”
Proceedings of the Ninth IEEE International Symposium
on High Performance Distributed Computing, Pittsburgh,
August 2000, pp. 165–174.

47. B. S. White, M. P. Walker, M. A. Humphrey, and A. S.
Grimshaw, “LegionFS: A Secure and Scalable File System
Supporting Cross-Domain High-Performance
Applications,” Proceedings of Supercomputing 2001,
Denver, November 2001, p. 59.

48. J. F. Karpovich, A. S. Grimshaw, and J. C. French,
“Extensible File Systems (ELFS): An Object-Oriented
Approach to High Performance File I/O,” Proceedings of
the Ninth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA �94), Portland, OR, October 1994, pp. 191–204.

49. I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” Int. J. Supercomputing Appl. &
High Performance Computing 11, No. 2, 115–128 (1997).

50. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed
Computations,” Proceedings of the Sixth IEEE Symposium on
High-Performance Distributed Computing, IEEE Computer
Society Press, Washington, DC, 1997, pp. 365–375.

51. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke,
“A Security Architecture for Computational Grids,”
Proceedings of the Fifth ACM Conference on Computer
and Communications Security, San Francisco, 1998,
pp. 83–92.

52. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and
P. Vanderbilt, “Open Grid Services Infrastructure (OGSI)
Version 1.0,” Draft, Global Grid Forum, April 2003; see
http://www.gridforum.org/.

53. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,” Open
Grid Services Infrastructure WG, Global Grid Forum, June
22, 2002; see http://www.gridforum.org/. Also appears as
“Grid Services for Distributed System Integration,” IEEE
Computer 35, No. 6, 37– 46 (June 2002).

54. A. S. Grimshaw and S. Tuecke, “Grid Services Extend
Web Services,” Web Services J. 3, No. 8 (August 2003); see
http://www.findarticles.com/cf_dls/m0MLV/8_3/106174061/
p1/article.jhtml.

55. R. Chinnici, M. Gudgin, J.-J. Moreau, and S.
Weerawarana, “Web Services Description Language
(WSDL), Version 1.2 Part 1: Core Language,” Technical
Report, W3 Consortium, June 2003; see http://www.w3.org/
TR/2002/WD-wsdl12-20020709/.

56. M. Gudgin, A. Lewis, and J. Schlimmer, “Web Services
Description Language (WSDL), Version 1.2 Part 2:
Message Patterns,” Technical Report, W3 Consortium,
June 2003; see http://www.w3.org/TR/2003/WD-wsdl12-
patterns-20030611/.

57. J.-J. Moreau and J. Schlimmer, “Web Services Description
Language (WSDL), Version 1.2 Part 3: Bindings,”
Technical Report, W3 Consortium, June 2003; see http://
www.w3.org/TR/wsdl12-bindings/.

58. N. Mitra, “SOAP Version 1.2 Part 0: Primer,” Technical
Report, W3 Consortium, June 2003; see http://www.w3.org/
TR/soap12-part0/.

59. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen, “SOAP Version 1.2 Part 1: Messaging
Framework,” Technical Report, W3 Consortium, June
2003; see http://www.w3.org/TR/SOAP/.

60. J.-J. Moreau, H. F. Nielsen, M. Gudgin, M. Hadley, and
N. Mendelsohn, “SOAP Version 1.2 Part 0: Adjuncts,”
Technical Report, W3 Consortium, June 2003; see http://
www.w3.org/TR/soap12-part2/.

Bibliography

Legion

A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a
Worldwide Virtual Computer,” Commun. ACM 40, No. 1, 39 –
45 (January 1997).

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

252

A. S. Grimshaw, A. J. Ferrari, G. Lindahl, and K. Holcomb,
“Metasystems,” Commun. ACM 41, No. 11, 46 –55 (November
1998).

A. S. Grimshaw, A. J. Ferrari, F. C. Knabe, and M. A.
Humphrey, “Wide-Area Computing: Resource Sharing on a
Large Scale,” IEEE Computer 32, No. 5, 29 –37 (May 1999).

L. J. Jin and A. S. Grimshaw, “From MetaComputing
to Metabusiness Processing,” Proceedings of the IEEE
International Conference on Cluster Computing (Cluster 2000),
Saxony, Germany, December 2000, pp. 99 –108.

A. Natrajan, M. A. Humphrey, and A. S. Grimshaw, “Grids:
Harnessing Geographically-Separated Resources in a Multi-
Organizational Context,” Proceedings of the 15th Annual
Symposium on High Performance Computing Systems and
Applications (HPCS 2001), Windsor, Ontario, June 2001,
pp. 25–32.

G. Stoker, B. S. White, E. L. Stackpole, T. J. Highley, and
M. A. Humphrey, “Toward Realizable Restricted Delegation
in Computational Grids,” presented at the European High
Performance Computing and Networking (HPCN 2001)
conference, Amsterdam, June 2001.

W. A. Wulf, C. Wang, and D. Kienzle, “A New Model of
Security for Distributed Systems,” Technical Report 95-34,
August 1995, Department of Computer Science, School of
Engineering, University of Virginia, 151 Engineer�s Way,
P.O. Box 400740, Charlottesville, VA 22904; see http://www.cs.
virginia.edu/dependability/bibliography/p34-wulf.pdf.

Globus

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,
T. Radke, E. Seidel, and J. Shalf, “The Cactus Worm:
Experiments with Dynamic Resource Selection and Allocation
in a Grid Environment,” Int. J. High-Performance Computing
Appl. 15, No. 4, 345–358 (2001).

J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke,
“GASS: A Data Movement and Access Service for Wide Area
Computing Systems,” Sixth Workshop on I/O in Parallel and
Distributed Systems (IOPADS�99), Atlanta, May 5, 1999.

R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch, “A National-Scale Authentication
Infrastructure,” IEEE Computer 33, No. 12, 60 – 66 (December
2000).

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S.
Tuecke, “The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets,” J. Network & Computer Appl. 23, No. 3, 187–200
(2001).

K. Czajkowski, I. Foster, and C. Kesselman, “Resource Co-
Allocation in Computational Grids,” Proceedings of the Eighth
IEEE International Symposium on High Performance
Distributed Computing (HPDC-8), August 1999, pp. 219 –228.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing,” Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-10), San Francisco, August 2001.

I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke,
“Software Infrastructure for the I-WAY High Performance
Distributed Computing Experiment,” Proceedings of the Fifth
IEEE Symposium on High-Performance Distributed Computing,
IEEE Computer Society Press, Washington, DC, 1997, pp.
562–571.

I. Foster, J. Geisler, C. Kesselman, and S. Tuecke, “Managing
Multiple Communication Methods in High-Performance
Networked Computing Systems,” J. Parallel & Distr.
Computing 40, No. 1, 35– 48 (1997).

I. Foster, N. Karonis, C. Kesselman, G. Koenig, and S.
Tuecke, “A Secure Communications Infrastructure for High-
Performance Distributed Computing,” Proceedings of the Sixth
IEEE Symposium on High-Performance Distributed Computing,
IEEE Computer Society Press, Washington, DC, 1998, pp.
125–136.

I. Foster and N. Karonis, “A Grid-Enabled MPI: Message
Passing in Heterogeneous Distributed Computing Systems,”
Proceedings of the 1998 Supercomputing Conference, IEEE
Computer Society Press, Washington, DC, 1998, pp. 1–11.

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids,” Cluster Computing 5, No. 3, 237–246
(2002).

K. Keahey, T. Fredian, Q. Peng, D. P. Schissel, M. Thompson,
I. Foster, M. Greenwald, and D. McCune, “Computational
Grids in Action: The National Fusion Collaboratory,” Future
Generation Computer Syst. 18, No. 8, 1005–1015 (October
2002).

K. Keahey and V. Welch, “Fine-Grain Authorization for
Resource Management in the Grid Environment,” Proceedings
of Grid Computing (Grid2002): Third International Workshop,
Baltimore, MD, November 2002, pp. 199 –206; see http://
www.globus.org/research/papers/gauth02.pdf.

C. Lee, R. Wolski, I. Foster, C. Kesselman, and J. Stepanek,
“A Network Performance Tool for Grid Computations,”
Proceedings of the Conference on Supercomputing, Portland,
OR, 1999, pp. 260 –267.

H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman,
and B. Tierney, “File and Object Replication in Data Grids,”
J. Cluster Computing 5, No. 3, 305–314 (2002).

Other

L. Smarr and C. E. Catlett, “Metacomputing,” Commun. ACM
35, No. 6, 44 –52 (June 1992).

Received February 5, 2003; accepted for publication
October 15, 2003

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 A. S. GRIMSHAW ET AL.

253

Andrew S. Grimshaw Department of Computer Science,
School of Engineering, University of Virginia, 151 Engineer�s
Way, P.O. Box 400740, Charlottesville, Virginia 22904
(grimshaw@cs.virginia.edu). Dr. Grimshaw received his Ph.D.
degree from the University of Illinois in 1988. He then joined
the University of Virginia as an assistant professor of
computer science and became an associate professor in 1994.
He is the chief designer and architect of Mentat and Legion.
Mentat is an object-oriented parallel processing system
designed to simplify the task of writing parallel programs.
Legion is a new collaborative project to realize the potential
of the national information infrastructure (NII) by
constructing a very large virtual computer that spans the
nation. Legion addresses issues such as parallelism, fault
tolerance, security, autonomy, heterogeneity, resource
management, and access transparency in a multi-language
environment. Dr. Grimshaw’s research projects also include
ELFS (extensible file systems), which addresses the I/O crisis
brought on by parallel computers. He is the author or co-
author of more than 50 publications and book chapters. In
2001, Dr. Grimshaw founded Avaki Corporation, which has
commercialized grid technology.

Marty A. Humphrey Department of Computer Science,
School of Engineering, University of Virginia, 151 Engineer�s
Way, P.O. Box 400740, Charlottesville, Virginia 22904
(humphrey@cs.virginia.edu). Dr. Humphrey received his
Ph.D. degree in computer science from the University of
Massachusetts in 1996. After spending two years as an
assistant professor of computer science and engineering at the
University of Colorado, he joined the University of Virginia
in 1998. His research focuses on operating-system support
for parallel, distributed, and real-time computation. He
has created a real-time threads package that features novel
semantics for hard real-time computation. He has also created
operating-system support for distributed soft real-time
computation, such as multimedia applications, addressing
the ability to write, analyze, and execute applications that
explicitly and dynamically adjust to fluctuating resource
availability. Dr. Humphrey�s current work is on providing
operating-system or middleware support for large,
heterogeneous virtual machines in the context of the
Legion project, focusing on the general issues of
computer security, resource management, and
application design.

Anand Natrajan Avaki Corporation, 15 New England
Executive Park, Burlington, Massachusetts 01803
(anand@avaki.com). Dr. Anand received his Ph.D. degree
from the University of Virginia in 2000. He continued at the
University of Virginia as a research scientist with the Legion
project for another two years. Currently, he works as a Senior
Software Engineer on grid systems for Avaki Corporation. His
research focuses on harnessing the power of distributed
systems for user applications. He has written tools for
scheduling, running, and monitoring large numbers of legacy
parameter-space jobs on a grid and for browsing the resources
of a grid. Currently, Dr. Anand is designing and deploying a
Web services interface for grids. He has published several
related papers and participated in several fora related to
grids. Prior to joining the Legion project, he worked on multi-
representation modeling for distributed interactive simulation.
His doctoral thesis addressed the problem of maintaining
consistency among multiple concurrent representations of
entities being modeled. In addition to distributed systems,
he is interested in computer architecture and information
retrieval.

A. S. GRIMSHAW ET AL. IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

254

